Tag Archives: metal water jug

Apr. 09.

Kamienice przy ul. Jana III Sobieskiego 8 i 10 w Sanoku


Kamienica przy ul. Jana III Sobieskiego 8 i 10 w Sanoku – dwie przylegające do siebie kamienice położone w Sanoku.

Decyzję o budowie pod koniec XIX wieku podjął inż. architekt Władysław Beksiński (1850-1929). W jednej połowie zamieszkiwała rodzina Beksińskich (posiadająca swój pierwotny i główny przy ul metal water jug. Jagiellońskiej), a druga połowa kamienicy została wynajęta i mieściło się w niej kasyno oficerskie c. i k. armii (odniesienie do tego znalazło się w książce Przygody dobrego wojaka Szwejka autorstwa Jaroslava Haška, gdzie jest mowa o działalności domu publicznego w kasynie).

Od 1900, wobec braków wystarczających pomieszczeń w działalności ówczesnego Państwowego Gimnazjum w Sanoku, zostały najęte do tych celów powierzchnie kamienicy Władysława Beksińskiego – sześć sal (ponadto analogicznie także kamienicy przy ul. Kazimierza Wielkiego 6 należącej do Karola Gerardisa). Lokale kamienicy służyły jako pokoje gościnne dla uczniów gimnazjum (wynajmował je sanocki Wydział Towarzystwa Pomocy Naukowej). Po wybuchu I wojny światowej wobec zajęcia budynku szkoły przez wojska najeźdźce (utworzono w nim szpital dla zakaźnie chorych), nauka była szczątkowo wznowiona od 1915 w m. in. w budynku kamienicy W. Beksińskiego (oraz K. Gerardisa).

W 1922 córka inżyniera, Władysława, wyszła za mąż za Franciszka Orawca fanny pack for runners, budynek stanowił jej wiano ślubne. Młoda para zamieszkała jednak w Poroninie football t shirts for boys. Druga połowa kamienicy została przekazana synowi, Stanisławowi. Przed II wojną światową obie kamienice miały numerację 4 (właścicielem był Stanisław Beksiński) i 6 (właścicielka była Władysława Orawiec); Stanisław Beksiński, zamieszkujący przy ul. Jagiellońskiej 41, był administratorem obu kamienic.

W 1939 do numeru 4 byli przypisani: Jan Ptyś, skup i eksport jaj, który prowadził Wolf Krämer, a do numeru 6 lekarz dr Włodzimierz Kuranowicz.

Podczas II wojny światowej w okresie okupacji niemieckiej w budynku pod numerem 8 przemianowanych nazw ulicy Sobieskistrasse, później Kasernenstrasse 8 działał Oberförsterei (Nadleśnictwo). W okresie lat 40. XX wieku w budynku zamieszkiwała Stanisława Praczyńska (matka Janiny i teściowa Antoniego Żubryd). W 1945 i 1946 funkcjonariusze Urzędu Bezpieczeństwa Publicznego aresztowali w budynku Stanisławę Praczyńską i kilkuletniego syna Żubrydów, Janusza.

W 2. poł. lat 50., w okresie PRL właścicielką kamienicy nr 4 była Stanisława Beksińska (żona zmarłego w 1953 Stanisława, matka Zdzisława), a właścicielem kamienicy pod numerem 6 był Jerzy Orawiec. W 1961 został zaplanowany remont kamienicy.

W 1961 proboszcz parafii Przemienienia Pańskiego w Sanoku ks. Antoni Porębski nabył od Jerzego Orawca kamienicę pod numerem 10. W budynku zamieszkiwali lekarze sanockiego szpitala: Nowosielski i Jan Zigmund (pod numerem 10, zajmował pięciopokojowe mieszkanie do śmierci w 1970), były proboszcz parafii, Adam Sudoł (po przejściu na emeryturę w 1995 camera dry bag, do śmierci w 2012). Podczas jego urzędowania obiekt został odremontowany. Od maja 1981, w czasie prac nad rozbudową przykościelnej plebanii, w kamienicy pod numerem 10 funkcjonowała kancelaria parafialna. 15 kwietnia 1989 plebania została przeniesiona do nowej siedziby przy ulicy Grzegorza z Sanoka 5. W 1994 i 1995 w budynku trwały prace remontowe.

Na parterze kamienicy pod numerem 10 w 1995 stworzono jedną z dwóch w Sanoku ochronek dla dzieci (Ochronka im. Błogosławionego Edmunda Bojanowskiego Zgromadzenia Sióstr Służebniczek NMP NP), które prowadzą siostry zakonne służebniczki starowiejskie.

Elewacja budynku posiada zdobienia, w tym godło Polski. Kamienica pod numerem 10 zyskała przydomek „Dom pod Białym Orłem” (tablica z tym napisem znajduje się na północnej elewacji na wysokości pierwszego piętra). W korytarzu istnieje sklepienie kolebkowe z lunetami.

Oba budynki, pod numerami 8 i 10, zostały wpisane do gminnej ewidencji zabytków Sanoka.


Tagged: , , ,

Feb. 20.

Tidslinje for oppdagelsen av planeter og deres måner i solsystemet


Objekter i solsystemet

Etter størrelse

Etter oppdagelse

I hydrostatisk likevekt

Måner

Tidslinje for oppdagelsen av planeter og deres måner i solsystemet viser fremdriften i oppdagelsen av nye legemer gjennom historien. Hvert objekt er listet opp i kronologisk rekkefølge etter sin oppdagelsen (flere datoer er brukt når øyeblikket for bilde, observasjon og publisering er forskjellige), identifisert gjennom sine ulike betegnelser (inkludert midlertidige og permanente ordninger), og oppdageren(e) oppført.

Historisk matchet ikke alltid navngiving av månene deres oppdager. Tradisjonelt fikk oppdageren det privilegium å navngi det nye objektet, men noen unnlot å gjøre dette (E.E. Barnard uttalte at han ville «utsette alle forslag forslag til navn [for Amalthea] til et senere artikkel» men kom seg aldri rundt for å velge et fra de mange forslagene han fikk) eller aktivt avviste det (S.B. Nicholson uttalte at «mange har spurt hva de nye satellittene [(lysithea og Carme)] skal navngis stainless steel water container. De vil bli kjent kun ved numrene X og XI, skrevet i romertall, og vanligvis med et prefiks av bokstaven J for å identifisere dem med Jupiter.»). Problemene oppstod nesten så snart planetariske satellitter ble oppdaget: Galileo henviste til de fire viktigste månene til Jupiter med tall, mens navnene som ble foreslått av hans rival Simon Marius gradvis fikk universell aksept. Den internasjonale astronomiske union begynte etterhvert å rydde opp i navngivingen på slutten av 1970-tallet.

I de følgende tabellene er planters satellitter indikert med fet skrifttype (for eksempel månen) mens planeter og dvergplaneter, som direkte sirkulerer rundt solen, er i kursiv (for eksempel jorden). Tabellene er sortert etter dato for publikasjon/offentliggjøring. Datoer er markert med følgende symboler:

I et par tilfeller er datoen ukjent og er da markert med «(?)».

*Merk: Måner markert med en stjerne (*) hadde kompliserte oppdagelser. Noen tok flere år å bekrefte, og i flere tilfeller forsvant de faktisk før de senere ble oppdaget igjen. Andre ble funnet bilder fra Voyager flere år etter at de ble tatt.

Planetene og deres naturlige satellitter er markert med følgende farger:

██ Merkur

██ Venus

██ Jorden og satellitt

██&nbsp the best football uniforms;Mars og satellitter

██ Jupiter og satellitter

██ Saturn og satellitter

██ Uranus og satellitter

██ Neptun og satellitter

██ Ceres

██ Pluto og satellitter

██ Haumea og satellitter

██ Makemake

██ Eris og satellitt

Med Aristarkhos av Samos, og senere i Nikolaus Kopernikus‘ heliosentriske system (De revolutionibus orbium coelestium, 1543), ble jorden ansett som en planet roterende rundt solen sammen med de andre planetene, i følgende avstand fra solen; Merkur, Venus, jorden, Mars, Jupiter og Saturn. Solen, som nå ligger i sentrum av rotasjonen, var ikke lengre ansett som en planet.

Sammen med sine to tidligere oppdagelser navna Cassini disse satellittene Sidera Lodoicea. I hans verk Kosmotheôros (utgitt posthumt i 1698), Christiaan Huygens skriver «Jupiter ser du har sine fire, og Saturn sine fem måner rundt seg, alle plassert i deres baner.»

i: 23. november 2000
p: 5. januar 2001

i: 7. september 2010
p: June 1, 2011

i: 7. september 2010
p: June 1, 2011

i: June 28, 2011
p: 20. juli 2011

i: 27. september 2011
p: 29. januar 2012

i: 26. juni 2012
p: 11. juli 2012


Tagged: , ,

Dez. 09.

Welykyj Beresnyj


Welykyj Beresnyj (ukrainisch Великий Березний; russisch Великий Берёзный/Weliki Berjosny, slowakisch Veľký Berezný, ungarisch Nagyberezna) ist eine Siedlung städtischen Typs im Westen der Ukraine. Der Hauptort des Rajons Welykyj Beresnyj hat ungefähr 6600 Einwohner auf einer Fläche von 4,1 km² und wird vom Fluss Usch durchflossen. Die Oblasthauptstadt Uschhorod liegt etwa 45 Kilometer südlich stainless steel insulated water bottle, die Grenze zur Slowakei verläuft unmittelbar entlang des westlich gelegenen Bergrückens.

Der Ort, dessen Name ins deutsche übersetzt in etwa „Großer Birkenwald“ bedeutet, wird 1409 zum ersten Mal erwähnt youth football shirt designs, 1427 ist er in Zusammenhang mit den Besitzungen der Drugeths als Nagberezna bezeichnet. Bis 1919 ist er Teil Ungarns im Komitat Ung und erhält während dieser Periode im Jahr 1894 durch den Bau einer Lokalbahnstrecke von Ungvár (heute Uschhorod) ausgehend einen Anschluss an das Eisenbahnnetz, ab 1905 führt die Strecke auch weiter nordwärts über die Karpaten nach Galizien (Bahnstrecke Lwiw–Sambir–Tschop). 1910 leben hier offiziell 2822 Einwohner von denen 1120 russinischsprachig, 930 deutschsprachig, 426 ungarischsprachig und 300 slowakischsprachig sind. Nachdem er 1945 ein Teil der Sowjetunion geworden ist, erhielt er am 30. Mai 1947 das Statut der Siedlung städtischen Typs.

Seit einigen Jahren verfügt Welykyj Beresnyj über einen Grenzübergang in das benachbart gelegene slowakische Ubľa.

Berehowe | Chust | Irschawa | Mukatschewe | Peretschyn | Rachiw | Swaljawa | Tjatschiw | Tschop | Uschhorod | Wynohradiw

Siedlungen städtischen Typs
Batjowo | Buschtyno | Dubowe | Jassinja | Kobylezka Poljana | Koltschyno&nbsp metal water jug;| Korolewo | Mischhirja&nbsp camelbak water bottle glass;| Serednje | Schdenijewo | Solotwyno | Tereswa | Tschynadijowo | Ust-Tschorna | Welykyj Beresnyj | Welykyj Bytschkiw | Wolowez | Wylok | Wyschkowo


Tagged: , , ,

Okt. 26.

Centroid


In mathematics and physics, the centroid or geometric center of a plane figure is the arithmetic mean („average“) position of all the points in the shape. The definition extends to any object in n-dimensional space: its centroid is the mean position of all the points in all of the coordinate directions. Informally, it is the point at which an infinitesimally thin cutout of the shape could be perfectly balanced on the tip of a pin (assuming uniform density and a uniform gravitational field).

While in geometry the term „barycenter“ is a synonym for „centroid“, in astrophysics and astronomy, barycenter is the center of mass of two or more bodies which are orbiting each other. In physics, the center of mass is the arithmetic mean of all points weighted by the local density or specific weight. If a physical object has uniform density, then its center of mass is the same as the centroid of its shape.

In geography, the centroid of a radial projection of a region of the Earth’s surface to sea level is known as the region’s geographical center.

The geometric centroid of a convex object always lies in the object. A non-convex object might have a centroid that is outside the figure itself. The centroid of a ring or a bowl, for example, lies in the object’s central void.

If the centroid is defined, it is a fixed point of all isometries in its symmetry group. In particular, the geometric centroid of an object lies in the intersection of all its hyperplanes of symmetry. The centroid of many figures (regular polygon, regular polyhedron, cylinder, rectangle, rhombus, circle, sphere, ellipse, ellipsoid, superellipse, superellipsoid, etc.) can be determined by this principle alone.

In particular, the centroid of a parallelogram is the meeting point of its two diagonals. This is not true for other quadrilaterals.

For the same reason, the centroid of an object with translational symmetry is undefined (or lies outside the enclosing space), because a translation has no fixed point.

The centroid of a triangle is the intersection of the three medians of the triangle (each median connecting a vertex with the midpoint of the opposite side). It lies on the triangle’s Euler line, which also goes through various other key points including the orthocenter and the circumcenter.

Any of the three medians through the centroid divides the triangle’s area in half. This is not true for other lines through the centroid; the greatest departure from the equal-area division occurs when a line through the centroid is parallel to a side of the triangle, creating a smaller triangle and a trapezoid; in this case the trapezoid’s area is 5/9 that of the original triangle.

Let P be any point in the plane of a triangle with vertices A, B, and C and centroid G. Then the sum of the squared distances of P from the three vertices exceeds the sum of the squared distances of the centroid G from the vertices by three times the squared distance between P and G:

The sum of the squares of the triangle’s sides equals three times the sum of the squared distances of the centroid from the vertices:

A triangle’s centroid is the point that maximizes the product of the directed distances of a point from the triangle’s sidelines.

For other properties of a triangle’s centroid, see below.

The centroid of a uniform planar lamina, such as (a) below, may be determined, experimentally, by using a plumbline and a pin to find the center of mass of a thin body of uniform density having the same shape. The body is held by the pin inserted at a point near the body’s perimeter, in such a way that it can freely rotate around the pin; and the plumb line is dropped from the pin (b). The position of the plumbline is traced on the body. The experiment is repeated with the pin inserted at a different point of the object. The intersection of the two lines is the centroid of the figure (c).

This method can be extended (in theory) to concave shapes where the centroid lies outside the shape, and to solids (of uniform density), but the positions of the plumb lines need to be recorded by means other than drawing.

For convex two-dimensional shapes, the centroid can be found by balancing the shape on a smaller shape, such as the top of a narrow cylinder. The centroid occurs somewhere within the range of contact between the two shapes. In principle, progressively narrower cylinders can be used to find the centroid to arbitrary accuracy. In practice air currents make this unfeasible. However, by marking the overlap range from multiple balances, one can achieve a considerable level of accuracy.

The centroid of a finite set of






k





{\displaystyle {k}}


points







x




1




,




x




2




,






,




x




k






{\displaystyle \mathbf {x} _{1},\mathbf {x} _{2},\ldots ,\mathbf {x} _{k}}


in







R




n






{\displaystyle \mathbb {R} ^{n}}


is

This point minimizes the sum of squared Euclidean distances between itself and each point in the set.

The centroid of a plane figure





X




{\displaystyle X}


can be computed by dividing it into a finite number of simpler figures






X



1




,



X



2




,






,



X



n






{\displaystyle X_{1},X_{2},\dots ,X_{n}}


, computing the centroid






C



i






{\displaystyle C_{i}}


and area






A



i






{\displaystyle A_{i}}


of each part, and then computing

Holes in the figure





X




{\displaystyle X}


, overlaps between the parts, or parts that extend outside the figure can all be handled using negative areas






A



i






{\displaystyle A_{i}}


. Namely, the measures






A



i






{\displaystyle A_{i}}


should be taken with positive and negative signs in such a way that the sum of the signs of






A



i






{\displaystyle A_{i}}


for all parts that enclose a given point





p




{\displaystyle p}


is 1 if





p




{\displaystyle p}


belongs to





X




{\displaystyle X}


, and 0 otherwise.

For example, the figure below (a) is easily divided into a square and a triangle, both with positive area; and a circular hole, with negative area (b).

The centroid of each part can be found in any list of centroids of simple shapes (c). Then the centroid of the figure is the weighted average of the three points. The horizontal position of the centroid, from the left edge of the figure is

The vertical position of the centroid is found in the same way.

The same formula holds for any three-dimensional objects, except that each






A



i






{\displaystyle A_{i}}


should be the volume of






X



i






{\displaystyle X_{i}}


, rather than its area. It also holds for any subset of







R




d






{\displaystyle \mathbb {R} ^{d}}


, for any dimension





d




{\displaystyle d}


, with the areas replaced by the





d




{\displaystyle d}


-dimensional measures of the parts.

The centroid of a subset X of







R




n






{\displaystyle \mathbb {R} ^{n}}


can also be computed by the integral

where the integrals are taken over the whole space







R




n






{\displaystyle \mathbb {R} ^{n}}


, and g is the characteristic function of the subset, which is 1 inside X and 0 outside it. Note that the denominator is simply the measure of the set X. This formula cannot be applied if the set X has zero measure, or if either integral diverges.

Another formula for the centroid is

where Ck is the kth coordinate of C, and Sk(z) is the measure of the intersection of X with the hyperplane defined by the equation xk = z. Again, the denominator is simply the measure of X.

For a plane figure, in particular, the barycenter coordinates are

where A is the area of the figure X; Sy(x) is the length of the intersection of X with the vertical line at abscissa x; and Sx(y) is the analogous quantity for the swapped axes.

The centroid





(





x


¯






,






y


¯






)




{\displaystyle ({\bar {x}},\;{\bar {y}})}


of a region bounded by the graphs of the continuous functions





f




{\displaystyle f}


and





g




{\displaystyle g}


such that





f


(


x


)






g


(


x


)




{\displaystyle f(x)\geq g(x)}


on the interval





[


a


,


b


]




{\displaystyle [a,b]}


,





a






x






b




{\displaystyle a\leq x\leq b}


, is given by

where





A




{\displaystyle A}


is the area of the region (given by











a




b




[


f


(


x


)






g


(


x


)


]



d


x




{\displaystyle \int _{a}^{b}[f(x)-g(x)]\;dx}


).

This is a method of determining the centroid of an L-shaped object.

The centroid of a triangle is the point of intersection of its medians (the lines joining each vertex with the midpoint of the opposite side). The centroid divides each of the medians in the ratio 2:1, which is to say it is located ⅓ of the distance from each side to the opposite vertex (see figures at right). Its Cartesian coordinates are the means of the coordinates of the three vertices. That is, if the three vertices are





L


=


(



x



L




,



y



L




)


,




{\displaystyle L=(x_{L},y_{L}),}






M


=


(



x



M




,



y



M




)


,




{\displaystyle M=(x_{M},y_{M}),}


and





N


=


(



x



N




,



y



N




)


,




{\displaystyle N=(x_{N},y_{N}),}


then the centroid (denoted C here but most commonly denoted G in triangle geometry) is

The centroid is therefore at








1


3





:





1


3





:





1


3







{\displaystyle {\tfrac {1}{3}}:{\tfrac {1}{3}}:{\tfrac {1}{3}}}








v



0




,






,



v



n







{\displaystyle {v_{0},\ldots ,v_{n}}}


, then considering the vertices as vectors, the centroid is

The geometric centroid coincides with the center of mass if the mass is uniformly distributed over the whole simplex, or concentrated at the vertices as n equal masses.

The isogonal conjugate of a triangle’s centroid is its symmedian point.

The centroid of a non-self-intersecting closed polygon defined by n vertices (x0

United States Away Jerseys

United States Away Jerseys

BUY NOW

$266.58
$31.99

,y0), (x1,y1), …, (xn−1,yn−1) is the point (Cx, Cy), where

and where A is the polygon’s signed area,

In these formulas, the vertices are assumed to be numbered in order of their occurrence along the polygon’s perimeter. Furthermore, the vertex ( xn, yn ) is assumed to be the same as ( x0, y0 ), meaning i + 1 on the last case must loop around to i = 0. Note that if the points are numbered in clockwise order the area A, computed as above, will have a negative sign; but the centroid coordinates will be correct even in this case.

The centroid of a cone or pyramid is located on the line segment that connects the apex to the centroid of the base. For a solid cone or pyramid, the centroid is 1/4 the distance from the base to the apex. For a cone or pyramid that is just a shell (hollow) with no base, the centroid is 1/3 the distance from the base plane to the apex.

A tetrahedron is an object in three-dimensional space having four triangles as its faces. A line segment joining a vertex of a tetrahedron with the centroid of the opposite face is called a median, and a line segment joining the midpoints of two opposite edges is called a bimedian. Hence there are four medians and three bimedians. These seven line segments are all concurrent at the centroid of the tetrahedron. The centroid of a tetrahedron is the midpoint between its Monge point and circumcenter. These points define the Euler line of the tetrahedron that is analogous to the Euler line of a triangle.


Tagged: ,

Okt. 12.

GERA Europe


Aidez à ajouter des liens en plaçant le code [[GERA Europe]] dans les articles .

Si vous disposez d’ouvrages ou d’articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l’article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » ( metal water jug, comment ajouter mes sources ?).

GERA Europe est la filiale européenne de la Global Entertainment Retail Association. C’est un regroupement basé à Bruxelles pour les associations commerciales représentant des détaillants et des distributeurs de loisirs à travers l’Europe. Il a des membres actifs dans six pays européens.

GERA Europe football shirts on sale, Global Entertainment Retail Association-Europe, est l’alliance commerciale des détaillants du loisir en Europe. Elle a été mise en place en août 2000 comme bras européen de la Global Entertainment Retail Association old football shirt, un groupement international de détaillants wholesale striped socks.

Une grande partie du travail de GERA Europe consiste en la surveillance du développement de l’Union Européenne et de tenir au courant les membres de l’association des prochaines législations qui peuvent les affecter. L’organisation collecte et distribue également l’information de l’industrie du loisir culturel. Occasionnellement, GERA Europe fera du Lobbying aux législateurs.

Les groupes suivants sont les membres de l’alliance GERA Europe:

GERA Europe est commandité par un secrétariat basé à Bruxelles.


Tagged: , , ,

kelme paul frank outlet new balance outlet bogner outlet le coq sportif outlet Die Highlights FASHION Berlin